Synthesis of N-(3-azido-2-nitroxypropyl)-, N-(2,3-diazidopropyl)-, and N-(2-azido-3-methoxypropyl)-N-alkylnitramines

V. A. Tartakovsky, A. S. Ermakov, and D. B. Vinogradov*

N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 117913 Moscow, Russian Federation. Fax: +7 (095) 135 5328. E-mail: secretary@ioc.ac.ru

N-(3-Azido-2-nitroxypropyl)-N-alkylnitramines and N-(2,3-diazidopropyl)-N-alkylnitramines were prepared by nitration and azidation of N-alkyl-N-(2-hydroxy-3-chloropropyl)sulfamates and N-(3-azido-2-hydroxypropyl)-N-alkylsulfamates.

Key words: N-alkylsulfamates, epichlorohydrin, glycidol ethers, N-(3-azido-2-hydroxypropyl)-N-alkylsulfamates, N-(3-azido-2-nitroxypropyl)-N-alkylnitramines, N-(2,3-diazidopropyl)-N-alkylnitramines.

As part of our continuing systematic studies of procedures for the preparation of nitrogen- and nitrogenoxygen-containing polyfunctional aliphatic compounds, we have considered the synthesis of derivatives of 2-nitroxy- and 2-azidopropyl-N-alkynylnitramines. 1-3 In this work, we studied the synthesis of diazido and azidonitroxy derivatives of N-nitramines (Scheme 1). N-Alkyl-N-(2-hydroxy-3-chloropropyl)sulfamates were used as starting compounds, which were transformed into the target products according to two procedures. The first procedure (method A) involved prior azidation of N-alkyl-N-(2-hydroxy-3-chloropropyi)sulfamates (1), which have been prepared previously,1,2 to the corresponding N-(3-azido-2-hydroxypropyl)-N-alkylsulfamates (2). This reaction proceeded with ~90% yield (the ¹H NMR spectra of sulfamates 2 are given in Table 1). Compounds 2 (without additional purification) were subjected to nitration with an acetic anhydride-HNO3 mixture to form N-(3-azido-2-nitroxypropyl)-N-alkylnitramines (3) in 65-70% yields. Azidation of compounds 3 under standard conditions afforded 2,3-diazidopropyl-N-alkylnitramines (5) in 40-55% yields. The second procedure (method B) involved nitration of compounds 1 to form N-alkyl-N-(3-methoxyand 3-chloro-2-nitroxypropyl)nitramines (4) in 70-80% yields. Then, we performed azidation of compounds 4 with sodium azide in DMF to obtain N-(2-azido-3methoxypropyl)- and N-(2,3-diazidopropyl)-N-alkylnitramines (5) in 25-39% yields. The degree of replacement of the nitrate group by the azide group was detected by IR spectroscopy (v(-ONO₂) 1680 cm⁻¹ and $v(-N_1)$ 2125 cm⁻¹).

The resulting compounds (2, 3, and 5) were characterized by ¹H NMR and IR spectroscopy and elemental analysis (Tables 1-3). These compounds are of interest as active plasticizers in gas-producing compositions. The

yields of compounds 5 prepared according to method A were somewhat higher than those obtained by method B. Therefore, the former procedure for the synthesis is somewhat preferred.

Experimental

The ¹H NMR spectra (8) were recorded on Bruker WM-250 and Bruker AM-300 instruments (250 and 300 MHz,

Scheme 1

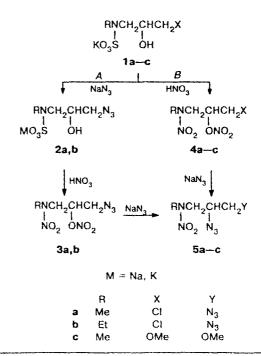


Table 1. ¹H NMR spectra of N-(3-azido-2-hydroxypropyl)-N-alkylsulfamates (2) (in D₂O)

Com- pound	¹H NMR, δ				
2 <u>a</u>	2.71 (s, 3 H, CH ₃ N); 2.95 (m, 2 H,NCH ₂); 3.40—3.60 (m, 2 H, CH ₂ N ₃); 4.00 (m, 1 H, CHOH)				
2b	1.15 (t, 3 H, CH ₃); 2.80-3.10 (m, 4 H, CH ₂ NCH ₂); 3.40-3.60 (m, 2 H, CH ₂ N ₃); 4.00 (m, 1 H, CHOH)				

respectively) in D_2O , $(CD_3)_2CO$, and $CDCl_3$ with HMDS as the internal standard. The products were purified by recondensation using an apparatus for sublimation.

Potassium sodium salt of N-(3-azido-2-hydroxypropyl)-N-ethylsulfaminic acid (2b). NaN₃ (2 g) was added to a solution of potassium N-(2-hydroxy-3-chloropropyl)-N-ethylsulfamate (1b) (4 g) in anhydrous DMF (15 mL) at 100--105 °C. The reaction mixture was stirred for 10 h and then concentrated. The product was extracted with hot EtOH (2×20 mL). The reaction mixture was concentrated. The mixed potassium sodium salt of N-(3-azido-2-hydroxypropyl)-N-ethylsulfaminic acid (2b) was obtained in a yield of 3.71 g. Salt 2a was prepared analogously.

N-(3-Azido-2-nitroxyporpyl)-N-ethylnitramine (3b). Potassium sodium salt 2b (3.34 g) was gradually added to a mixture of Ac₂O (19.3 mL) and 98% HNO₃ (5.5 mL) at the temperature of -7 to -10 °C. The reaction mixture was stirred at -7 to -10 °C for 1 h. Then the mixture was poured into ice water and extracted with ethyl acetate (3×40 mL). The extract was washed with an aqueous solution of Na₂CO₃ and water. The solvent was evaporated. The mixture was purified by recondensation using an apparatus for sublimation at the temperature of the bath of 70-75 °C (0.2 Torr). N-(3-Azido-2-nitroxypropyl)-N-ethylnitramine (3b) was obtained in a yield of 1.71 g. Compound 3a was prepared analogously.

N-(2,3-Diazidopropyt)-N-ethylnitramine (5b). Method A: CaCl₂ (1.60 g) and NaN₃ (1.19 g) were gradually added to a solution of compound 3b (1.71 g) in DMF (15 mL) at 80-85 °C. The reaction mixture was stirred for 26 h and poured into H₂O (60 mL). The mixture was filtered. The filtrate was extracted with benzene (4×35 mL). The benzene solution was washed with water and concentrated. N-(2,3-Diazidopropyl)-N-ethylnitramine (5b) was obtained in a yield of 0.63 g. The resulting compound was purified by recondensation at 70-75 °C (0.2 Torr). Compound 5a was prepared analogously.

N-(2-Azido-3-methoxypropyl)-N-methylnitramine (5c). Method B. CaCl₂ (1.27 g) and NaN₃ (0.75 g) were gradually added to a solution of N-(3-methoxy-2-nitroxy)-N-methylnitramine 4c (1.20 g), which was prepared previously, in DMF (15 mL) at 85-90 °C. The reaction mixture was stirred for 30 h and poured into H_2O (50 mL). The mixture was filtered, the filtrate was extracted with benzene (4×30 mL), and the benzene solution was washed with water and concentrated. N-(2-Azido-3-methoxypropyl)-N-methylnitramine (5c) was obtained in a yield 0.42 g. The resulting compound was purified by recondensation at 60-65 °C (0.2 Torr). Compounds 5a,b were prepared analogously but the temperature was maintained at 80-85 °C. The duration of the reaction was 26 h.

Table 2. Characteristics of N-(3-azido-2-nitroxypropyl)-N-alkylnitramines, N-(2,3-diazidopropyl)-N-alkylnitramines, and N-(2-azido-3-methoxypropyl)-N-alkylnitramines

Com- pound	Yield (%)	M.p./°C [n _D ²²]	Found (%) Calculated			Molecular formula
			C	Н	N	
3a	67	5960	22,56 21.82	3.59 3.66		C ₄ H ₈ N ₆ O ₅
3 b	63	[1.5017]	26.08 25.65	<u>4.25</u> 4.30	36.25 35.89	C ₅ H ₁₀ N ₆ O ₅
5 a	55a 25b	[1.5215]	24.26 24.00	4.13 4.03	<u>56.46</u> 55.98	C ₄ H ₈ N ₈ O ₂
5b	40a 26b	[1.5180]			52.12 52.32	$C_5H_{10}N_8O_2$
5c	39	[1.4940]	<u>32.15</u> 31.75	<u>5.97</u> 5.86	37.12 37.02	$C_5H_{11}N_5O_3$

^a Azidation of compound 3.

Com-

Table 3. ¹H NMR spectra of *N*-(3-azido-2-nitroxypropyl)-*N*-alkylnitramines, *N*-(2,3-diazidopropyl)-*N*-alkylnitramines, and *N*-(2-azido-3-methoxypropyl)-*N*-alkylnitramines

¹H NMR. δ

pound	
3a*	3.48 (s, 3 H, CH ₃ N); 3.87 (m, 2 H, CH ₂ N ₃); 4.22 (m, 2 H, NCH ₂); 5.65 (m, 1 H, CHONO ₂)
3b	1.20 (t, 3 H, CH ₃ C); 3.50-3.75 (m, 4 H, CH ₂ N ₃ , CH ₂ N); 4.00 (m, 2 H, NCH ₂); 5.48 (m, 1 H, CHONO ₂)
5a	3.48 (s, 3 H, CH ₃ N); 3.50 (m, 2 H, CH ₂ N ₃); 3.80 (m, 2 H, NCH ₂); 4.08 (m, 1 H, CHN ₃)
5b	1.21 (t, 3 H, CH ₃ C); 3.32-3.92 (m, 6 H, CH ₂ N ₃ , CH ₂ NCH ₂); 4.02 (m, 1 H, CHN ₃)
5c	3.38 (s, 3 H, OCH ₃); 3.47 (s, 3 H, CH ₃ N); 3.55 (m, 2 H, CH ₂ O); 3.80 (m, 2 H, NCH ₂); 4.08 (m, 1 H,CHN ₃)

^{*}The spectrum of compound 3a was measured in deuteroacetone and the remaining spectra were measured in CDCl₃.

References

- V. A. Tartakovsky, A. S. Ermakov, D. B. Vinogradov, and N. V. Sigai, *Izv. Akad. Nauk, Ser. Khim.*, 1997, 1061 [Russ. Chem. Bull., 1997, 46, 1024 (Engl. Transl.)].
- V. A. Tartakovsky, A. S. Ermakov, and D. B. Vinogradov, *Izv. Akad. Nauk, Ser. Khim.*, 1997, 1987 [Russ. Chem. Bull., 1997, 46, 1883 (Engl. Transl.)].
- 3. V. A. Tartakovsky, A. S. Ermakov, D. B. Vinogradov, and P. V. Bulatov, Izv. Akad. Nauk, Ser. Khim., 1998, 67 [Russ. Chem. Bull., 1998, 47, 652 (Engl. Transl.)].

^b Azidation of compound 4.